Cloning of cDNAs coding for human HMG I and HMG Y proteins: both are capable of binding to the octamer sequence motif.

نویسندگان

  • R Eckner
  • M L Birnstiel
چکیده

In human B lymphocytes and placenta HMG I and its smaller isoform HMG Y are encoded by two distinct but structurally highly similar mRNAs which arise most likely by alternative splicing of a single primary transcript. Both have been cloned as cDNAs. On Northern blots an abundant mRNA species 2000 nucleotides in length was detected in all cell lines examined. Exclusively in erythroid cells an additional rare 3800 nucleotides long mRNA species was noted. In quiescent cells the mRNA levels of HMG I/Y were not significantly down-regulated. Southern blot analysis indicated that at least four genes are present per haploid human genome. Both proteins when expressed in bacteria bind specifically to A-T rich stretches of DNA suggesting that no posttranslational modifications are necessary for specific DNA binding. Interestingly, HMG I as well as HMG Y are capable of binding to the octamer transcriptional regulatory sequence motif.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High mobility group I/Y protein functions as a specific cofactor for Oct-2A: mapping of interaction domains.

The octamer motif (ATTTGCAT) present in several eukaryotic promoters and enhancers is now known to influence the transcription of several genes by interacting with members of a broad family of homeodomain proteins. The promoter of the human class II MHC gene HLA-DRA contains a conserved octamer element that can bind (among other proteins) the transcription factor Oct-2A and the high mobility gr...

متن کامل

SEPARATION OF NONHISTONE HIGH MOBILITY GROUP (HMG) FROM HUMAN LYMPHOCYTES BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

The high mobility group (HMG) of nonhistone proteins have been investigated using two high performance liquid chromatographic techniques (HPLC). Reversed-phase HPLC under conditions of 50 mM triethylamine adjusted to pH 2.2 with phosphoric acid (solvent A) and 95% acetonitrile in water (solvent B) was used to separate proteins primarily on the basis of differences in the overall hydrophobi...

متن کامل

Cloning and molecular characterization of TaERF6, a gene encoding a bread wheat ethylene response factor

Ethylene response factor proteins are important for regulating gene expression under different stresses. Different isoforms for ERF have previously isolated from bread wheat (Triticum aestivum L.) and related genera and called from TaERF1 to TaERF5. We isolated, cloned and molecular characterized a novel one based on TdERF1, an isoform in durum wheat (Tri...

متن کامل

An octamer motif is required for activation of the inducible nitric oxide synthase promoter in pancreatic beta-cells.

Nitric oxide, generated by the inducible form of nitric oxide synthase (iNOS), is a potential mediator of cytokine-induced beta-cell dysfunction in type 1 diabetes mellitus. We have previously shown that cytokine-induced iNOS expression is cycloheximide (CHX) sensitive and requires nuclear factor-kappa B (NF-kappa B) activation. In the present study, we show that an octamer motif located 20 bp ...

متن کامل

Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins.

The orderly progression of most DNA-related activities such as transcription, replication, recombination, and repair involves changes in the structure of the DNA and in the organization of the chromatin fiber. Some of these structural changes are facilitated by a family of ubiquitous and abundant nonhistone nuclear proteins known as the high-mobility-group (HMG) proteins. In the narrowest tradi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 17 15  شماره 

صفحات  -

تاریخ انتشار 1989